
Kickstarting High-performance Energy-efficient
Manycore Architectures with Epiphany

Andreas Olofsson†, Tomas Nordström*, and Zain Ul-Abdin*,

† Adapteva Inc.
Lexington, MA, USA

andreas@adapteva.com

*Centre for Research on Embedded Systems (CERES),
Halmstad University,

Halmstad, Sweden
{tomas.nordstrom, zain-ul-abdin}@hh.se

Abstract— In this paper we introduce Epiphany as a high-
performance energy-efficient manycore architecture suitable for
real-time embedded systems. This scalable architecture supports
floating point operations in hardware and achieves 50
GFLOPS/W in 28 nm technology, making it suitable for high
performance streaming applications like radio base stations and
radar signal processing. Through an efficient 2D mesh Network-
on-Chip and a distributed shared memory model, the
architecture is scalable to thousands of cores on a single chip. An
Epiphany-based open source computer named Parallella was
launched in 2012 through Kickstarter crowd funding and has
now shipped to thousands of customers around the world.

Keywords—manycore; parallel computing; signal processing;

embedded systems; energy efficient parallel processing.

I. INTRODUCTION
In recent years due to the never ending quest for more
compute performance there an shift towards integration of
many processor cores on a single chip, described as multicore
or manycore architectures. Examples of commercial manycore
efforts include the picoArray with 322 cores [1], Ambric with
336 cores [2], and Tile64 with 64 cores [3]. These processors
were all designed for very specific markets, have power
consumption that is an order of magnitude too high for most
mobile embedded systems and do not have native support for
floating point operations.

In this paper we set out to describe the efforts and results in
designing a high-performance energy-efficient manycore archi-
tecture, supporting floating-point calculations, for use in
embedded systems — the Epiphany architecture.

First we will describe the history and design goals for the
Epiphany architecture. We also describe the creative financing
used to kickstart a software eco-system around this new
computer architecture. Then we describe the resulting
architecture, its processor cores, memory and communication
and some of the tradeoffs involved in the design process. We
also describe the tools currently available and under
development for Epiphany and take a look at some of the early
applications developed on Epiphany. Finally, we draw some
conclusions about future work anticipated for the Epiphany
architecture and associated products.

II. HISTORY
Andreas Olofsson worked at Analog Devices from 1998-

2008, designing a number of application-specific processors
including the TigerSHARC floating-point VLIW Digital Signal
Processor (DSP) [4]. In 2004, the TigerSHARC was the most
energy-efficient commercial floating-point processor in the
market with 0.75 GFLOPS/W at 0.13um. Despite the
impressive performance of the TigerSHARC, in actuality it
was a very inefficient processor with only 2% of the silicon
area used for floating-point math. A common industry
assumption at the time was that inefficiencies in modern high
level programmable processors are unavoidable and that the
only solution is to use a radically different approach.
Empowered by an intimate understanding of the real silicon
cost of every feature in modern processors, Andreas founded
Adapteva in 2008 with the mission to create an easy to
program general purpose floating-point processor with an order
of magnitude (>10X) better energy efficiency than legacy CPU
solutions.

The following design goals were specified as “hard
constraints” for the new architecture:

1. Energy efficiency (50 GFLOPS/W)
2. High raw performance (2 GFLOPS/core)
3. Scalable to thousands of cores
4. Easy to program in ANSI-C/C99
5. Implementable by a team of 5 engineers

In 2009, after a year and a half independent of research and

development, Andreas announced the Epiphany manycore
architecture during a panel presentation at the High
Performance Embedded Computing Conference (HPEC) [5].
The Epiphany architecture was a clean slate design based on a
bare-bones floating-point RISC instruction set architecture
(ISA) and a packet based mesh Network-On-Chip (NOC) for
effectively connecting together thousands of individual
processors on a single chip. With a targeted power
consumption of 1W per 50 GFLOPS of performance, this new
architecture matched up well with the size, weight, and power
(SWAP) constraints seen in modern state-of-the-art streaming
signal processing system.

 In May 2011, Adapteva introduced the first product based
on the Epiphany architecture, a tiny 16-core 32 GFLOPS chip
(E16G301) implemented in 65nm. Three months later in
August 2011, the team taped out a 64-core design (E64G401)
in 28nm, demonstrating 50 GFLOPS/W (and 70 GFLOPS/W
without IO).

 Unfortunately, despite being the most energy-efficient
floating-point processors in the world, the Epiphany chips were
not gaining traction in any main stream high volume markets.
Without a rich software and hardware eco-system built around
the architecture, the transition cost was simply too high for
most companies. All other parallel processor companies had
run into similar challenges and had chosen to solve the
problem by either independently building an eco-system
through brute force spending or by providing complete
application solutions for specific markets. Unfortunately, both
of these approaches were extremely expensive, often
amounting to tens of millions of USD in non-recoverable
engineering expenses for the chip company.

 Industry data has shown that it takes on average 8 years and
costs between $100M-$400M for a public company and $25M-
$100M for a startup to bring an advanced new processor
solution to market. A rough breakdown of components
contributing to the high development costs include (normalized
to $100M): $10M for chip mask sets, $30M each for
Applications software (software team) and Chip development
(hardware team), and $10M for Software tool development
(tools team), then $10M for EDA tool licensing, and finally
$10M for Sales/Marketing.

When Adapteva launched in the midst of the 2008
recession, semiconductor startup venture funding had all but
dried up, leaving Adapteva with very limited resources. As a
result Adapteva was forced “to do more with less” and create a
number of new design techniques aimed at cutting
development costs. Cost-saving measures included iterative
design simplification, a modular chip design methodology,
horizontal engineering team integration, use of Multi-Project
Wafers for product design, and the use of the open source tools
such as Verilator and SystemC [6]. Using these cost-cutting
techniques, Adapteva designed four generations of Epiphany
manycore chips in less than 3 years with less than $2M in total
investments, setting a new standard for cost-effective chip
design in advanced technology nodes.

To tackle the challenge of building a complete parallel
computing eco-system around Epiphany, Adapteva again
innovated, turning to a crowd-funding platform called
Kickstarter to finance development. In September 2012,
Adapteva launched a $99 open source parallel computing
project named Parallella with the dual goal of democratizing
access to high performance parallel computing and building a
software eco-system around the Epiphany architecture. The
campaign was a huge success and in less than 30 days,
Adapteva had raised close to 1M USD from 4,965 project
backers, while committing to build and deliver over 6,300
Parallella computers to backers from 75 countries. All of the
Parallella boards were eventually delivered in June 2014,
making Adapteva the first semiconductor company in history
to successfully crowd-fund development.

At the time of publishing, Adapteva has built over 20,000
Epiphany based Parallella computers and has delivered
hardware to over 200 universities all around the world.

III. ARCHITECTURE DESCRIPTION
The Epiphany architecture, shown in Fig. 1 and Fig. 2, consists
of a 2D mesh of processor/mesh nodes (“eNode”), each
including a 32-bit floating-point RISC CPU (“eCore”), multi-
banked local memory, a direct memory access (DMA) engine,
an event monitor, and a network interface. Each node connects
to a NoC (“eMesh”) through the network interface [7].

Fig. 1. The overall Epiphany architecture.

Fig. 2. The eNode Structure.

A. Processing
The 32-bit Epiphany node processor “eCore” is an in-order

dual-issue RISC architecture that includes an IEEE754
compatible floating-point unit (FPU), an integer arithmetic
logic unit (ALU), and a 64-word register file.

eMesh

Router

DMA

Timers

Local MemoryeNode

NIeCore

DMA

Engine

Event

Timers

Local Memory
eNode

Network

Interface

MemBank0 MemBank1 MemBank2 MemBank3

eCore
64-Word

Register

File
Interrupt Handler

Sequencer

ALU

FPU

Fig. 3. The eCore Components.

1) Instruction Set
The Epiphany instruction set architecture (ISA) represents

an ultra-compact RISC approach, with emphasis placed on
real-time floating-point signal processing applications and C-
programmability. The following list shows the complete set of
instructions.

Epiphany Instruction Set:

• Floating Point: FADD, FSUB, FMUL, FMADD,
FMSUB, FIX, FLOAT, FABS

• Integer: ADD, SUB, LSL, LSR, ASR, EOR,
ORR, AND, BITR, NOP

• Move: MOV<COND>, MOVT, MOVFS,
MOVTS, TESTSET

• Load/Store: (LDR, STR) * 3 addressing modes
• Branching: B<cond>, BL, JR, JALR
• Core state and interrupt: IDLE, TRAP, BKPT,

RTI, GID, GIE, UNIMPL
• Global (chip) state and synchronization: SYNC,

MBKPT, WAND

The architecture contains four flags set by integer
operations (AN, AZ, AV, and AC) and two flags set by
floating point operations (BN, BZ) [8]. These six flags and
combinations of them result in 16 conditions codes that can be
used for the conditional moves and branching. In addition, the
floating-point operations set some sticky flags to indicate
invalid (NAN) operands, underflow and overflow.

The Epiphany ISA implements variable 16/32-bit
instruction encoding to maximize code density. All instructions
are available as both 16-bit and 32-bit opcodes, with the
instruction length being a function of the register number being
used and the size of the immediate field. Instructions that use
only R0-R7 and short immediate fields are encoded as 16-bit
instructions.

2) Register File
The 9-port 64-word register file can in every cycle

simultaneously perform the following operations:

• Three 32-bit floating-point operands can be read and
one 32-bit result written by the FPU.

• Two 32-bit integer operands can be read and one 32-
bit result written by the IALU.

• A 64-bit double-word can be written or read using a
load/store instruction.

3) Program Sequencer
The eCore includes a program sequencer to support

standard program flows including branches, jumps, calls, and
function return, as well as nested interrupts. Each core contains
a variable length 8-stage instruction pipeline. The first 5 stages
(IF, IM, DE, RA, E1) are shared by all instructions and all but
load/store and floating-point instructions are completed at the
E1 stage. The data from the loads are written to the register file
at stage 6 (E2), while the floating-point operations are
completed at stage 7 (E3) or stage 8 (E4), depending on
rounding mode. The instruction pipeline is fully interlocked to
ensure the correct execution of sequential programs with data
dependencies. The architecture can issue two instructions
simultaneously provided that the two instructions to be
executed do not have read-after-write or write-after-write
register dependencies. Furthermore, only integer/load/store
instructions are issued in parallel with FPU instructions.

4) Interrupt Controller
The interrupt controller provides full support for prioritized

nested interrupt service routines. There are currently ten
prioritized interrupts available: Sync/Reset (highest priority);
Software exception; Memory fault; Timer0 expired; Timer1
expired; DMA0 complete; DMA1 complete; multicore wired
and interrupt (“WAND”); and user interrupt (lowest). Every
interrupt has a unique entry in the Interrupt Vector Table
(IVT). The IVT is local to every core and is located at the
beginning of local memory. All interrupts can be masked
independently.

B. Memory Architecture
The Epiphany architecture does not include traditional

L1/L2 hardware caching, opting instead to maximize local
storage and memory bandwidth through the use of multi-
banked scratchpad memory. Scratchpad SRAMs have much
higher density than L1/L2 caches since they don’t include
complicated tag matching and comparison circuits.

The multi-banked local memory system supports
simultaneous instruction fetching, data fetching, and multicore
communication with four 8-byte-wide memory banks per core.

On every clock cycle, the following operations can occur:
• 64 bits of instructions can be fetched from memory to

the program sequencer.
• 64 bits of data can be passed between the local

memory and the CPU’s register file.
• 64 bits can be written into the local memory from the

network interface.
• 64 bits can be transferred from the local memory to the

network using the local DMA.

eCore

Sequencer

Interrupt Handler

FPU

ALU

64-Word

Register

File

The Epiphany memory architecture is based on a flat
distributed memory map where each compute node is assigned
a unique addressable slice of memory out of the total 32-bit
address space. The overall memory is divided into blocks of up
to 1MB that are co-located with each core in the
multiprocessor system.

TABLE I. EPIPHANY ADDRESS SPACE.

Bits 31..26 25..20 19..0

Address Mesh Row Mesh Column Local

The first 12 bits of an address specify a node by row and
column, with the remaining 20 bits being local to that node, as
shown in TABLE I. This means there can be at most 4096
mesh nodes operating within an addressable 64 x 64 2D mesh.
Any memory region assigned to external DRAM must also be
addressed through the same X/Y addressing scheme due to
hard routing constraints imposed by the Epiphany NoC routing
architecture.

A processor can access its own local memory and other
processors’ memory through regular load/store instructions. All
read and write transactions from local memory follow a strong
memory-order model. This means that the transactions
complete in the same order in which they were dispatched by
the program sequencer.

C. Network-On-Chip
The communication in the Epiphany is supported by the

eMesh Network-on-Chip (NoC), which consists of three
independent 2D scalable mesh networks, each with four duplex
links at every node. Each routing node consists of a round
robin five direction arbiter and a single stage FIFO.

The routing mechanism is based on a distributed address-
based routing that provides a single cycle wait, meaning that
there is a single cycle routing latency per node. Each eMesh
write link supports the transfer of 64 bits of data and 32 bits of
address on each clock cycle.

Each of the three meshes have different purposes. Read
requests travel through the rMesh, while cMesh and xMesh
carry write transactions destined for on-chip and off-chip
nodes, respectively. To the application, off-chip traffic is
indistinguishable from on-chip traffic, apart from lower
bandwidth and higher latency.

The eMesh architecture heavily favors writes over reads,
since reading a foreign address involves sending a read request
(over the rMesh) and waiting for the answer to arrive (on the
cMesh). Writes, on the other hand, are of a fire-and-forget
type, allowing the node to continue processing while the data
moves through the NoC towards its destination.

Fig. 4. The eMesh network consisting of three 2D meshes: read request

(rMesh), on-chip write (cMesh), and off-chip write (xMesh).

For read and write transactions that access non-local
memory, the memory order restrictions are relaxed to improve
performance. This relaxation of synchronization between
memory-access instructions and their surrounding instructions
is referred to as weak ordering of loads and stores. Weak
ordering implies that the timing of the actual completion of the
memory operations—even the order in which these events
occur—may not align with how they appear in the sequence of
the program source code. This non-determinism occurs for
read after write to same or different locations, and write after
write to different locations. If deterministic behavior is
necessary within an application, ordering can be guaranteed
through the use of software barriers.

Routing of traffic follows a few simple, static rules. At
every hop, the router compares its own address with the
destination address. If the row addresses are not equal, the
packet gets immediately routed to the east or west; otherwise,
if the column addresses are not equal, the packet gets routed to
the north or south; otherwise the packet gets routed into the
hub node, which then is the final destination. A read
transaction consists of a read request on the rMesh and a write
request on either the cMesh or xMesh.

When using the multicast feature of the mesh, a different
routing algorithm is used instead. In this case, the data is sent
radially outwards from the transmitting node. All nodes
compare the destination address with a local multicast register,
and if both values are equal (the node is listening to that
traffic), it enters the node. This feature allows writing to
multiple nodes using a single transaction.

DMA

Timers

Local Memory
eNode

NI

FPU

Interrupt Handler

eCore
64-Word
Register File

ALU

Sequencer

Mem0 Mem1 Mem2 Mem3

DMA

Timers

Local Memory
eNode

NI

FPU

Interrupt Handler

eCore
64-Word
Register File

ALU

Sequencer

Mem0 Mem1 Mem2 Mem3

DMA

Timers

Local Memory
eNode

NI

FPU

Interrupt Handler

eCore
64-Word
Register File

ALU

Sequencer

Mem0 Mem1 Mem2 Mem3

DMA

Timers

Local Memory
eNode

NI

FPU

Interrupt Handler

eCore
64-Word
Register File

ALU

Sequencer

Mem0 Mem1 Mem2 Mem3

eMesh
Router

eMesh
Router

eMesh
Router

eMesh
Router

Key features of the on-chip mesh network include:
• Optimization of write transactions over read transac-

tions. Writes are approximately 16x more efficient than
reads for on-chip transactions. Programs should use the
high write-transaction bandwidth and minimize inter-
node, on-chip read transactions.

• Separation of on-chip and off-chip traffic. The
separation of the xMesh and cMesh networks decouples
off-chip and on-chip communication, making it possible
to write on-chip applications that have deterministic
execution times regardless of the types of applications
running on neighboring nodes.

• Deadlock-free operation. The physically independent
read and write meshes—together with a fixed routing
scheme of moving transactions first along rows, then
along columns—guarantees that the network is free of
deadlocks for all traffic conditions.

• Scalability. The implementation of the eMesh network
allows it to scale to very large arrays. The only
limitation is the size of the address space. A 32-bit
Epiphany architecture scales to 4,096 processors and a
64-bit architecture scales to 18 billion processing
elements within a unified shared memory system.

D. External I/O
The on-chip eMesh network extends off-chip through four

(North, East, West, South) multiplexed (byte-oriented) I/O
links. Each off-chip link provides bidirectional bandwidth of 1
GB/s. These chip-to-chip links fully support the internal push-
back scheme and are designed to efficiently interface with low
cost FPGAs. The links can also be used to construct larger
glue-less arrays of up to 4,096 cores on a single board using a
large number of Epiphany based chips arranged in 2D grid.

IV. DESIGN DECISIONS
The following section provides insight into some of the design
decision made during the development of the Epiphany
architecture.

A. CPU Architecture Tradeoffs
The eCore CPU design philosophy was to be “as simple as

possible but not simpler.” In the domain of massively parallel
computers there have been a number of architectures with
impressive performance numbers that were very difficult to
program. The design goal of the Epiphany was to offer a 10x
energy efficiency boost over legacy CPU architectures while
still supporting an ANSI-C programming flow that the average
programmer could easily master.

To realize the firm design goals of a high-performance,
easy to use ANSI-C/C99 programmable machine, the
following C-friendly features were included in the Epiphany
architecture:

• In-order dual issue scheduling to boost performance
for virtually all applications.

• Native IEEE floating-point instructions to let
programmers focus on the mathematical algorithms
instead of operand scaling and numerical precision.

• A large 64-entry register file to enable efficient loop
unrolling and efficient variable reuse.

• A 64-bit load/store path to boost performance for
many memory-bound math algorithms.

• Native byte addressability to support true ANSI-
C/C99.

• Low cost features like the interrupt controller, debug
unit, and timers to make the manycore Epiphany
processor feel more like a traditional CPU.

Any features that clashed with the original five design goals set
out for the Epiphany architecture were dismissed. Examples of
rejected features included:

• Out of order scheduling would not have given a
significant performance boost in streaming signal
processing applications and clashed with the energy
efficiency design goal.

• Hardware caching would have made reaching energy
efficiency target of 50 GFLOPS/W impossible and it
also would have made scaling to thousands of cores
very difficult due to the complexity of coherency and
off-chip DRAM access contention.

• Bit manipulation instructions such as Not, Mask,
Rotate, Add Carry, and Ones were left out because
they are rare in signal processing and would have
incurred an incremental but unacceptable power and
area penalty in every active clock cycle.

• Orthogonal data type ISA support was left out in
order meet the energy efficiency target. One of the
key takeaways from the TigerSHARC was that the
cost of an orthogonal ISA is enormous in terms of
hardware design complexity. It is far more efficient to
have a base architecture with a small set of derivative
instruction sets for different markets (i.e. signed,
unsigned, 8b, 16b, 32b) data type ISA.

• A branch target buffer was not implemented, as this
would likely have made reaching the energy
efficiency goal impossible. Instead a simple scheme
of “branch never taken” was chosen with a 3 cycle
branch penalty imposed for every branch that is taken.

B. Network-on-chip Tradeoffs
The design of the Epiphany network-on-chip also involved

a number of non-obvious design tradeoffs. For Epiphany the
reasoning around these tradeoffs can be structured around
selection of topology, packet- or circuit-switched network, and
finally routing and flow control.

1) eMesh topology
For Epiphany, a 2D mesh network was selected as this is a

simple topology that matches up well with the planar layout
topology used for standard CMOS processes and is well
understood after decades of research. Furthermore, many of the
intended math and signal processing algorithms have already
been mapped to 2D mesh networks. Torus wraparound
connections were ruled out as they would have required twice

as many wires per cross-section. Higher order networks such as
butterfly and CLOS were ruled out as being too large and too
complex to be suitable considering the traffic patterns found in
the signal processing applications.

2) Packet switching
Address-based packet switching scheme was chosen in

place of a circuit switch-based network to provide flexibility
across a broad set of applications. The most important and non-
intuitive design decision for the eMesh NoC has been to send a
complete destination address with every data transaction. The
hardware saved through the resulting design simplification far
outweighed the cost of the extra bits of address transmission.
The design choices may seem counter-intuitive to those
familiar with large scale networks, because the relative cost of
wires, drivers, and registers are completely different for NoCs
compared to larger system-based networks where wire costs
tend to be extremely high.

3) Routing and flow control
The eMesh routing is based on a simple state-less X/Y

routing enabling scaling to large array sizes. Flow control is
handled through a pushback signal propagating backwards
through the mesh at the same speed that the traffic moves
forward, ensuring that no packets are ever lost. The single
cycle push back flow control method cost an extra stage of
shadow registers and a mux at every routing stage, but this cost
was deemed acceptable compared with the benefit of single
cycle hop latencies and low stall penalties.

QOS features were kept out of the first generations of the
Epiphany architecture because it was assumed that most traffic
patterns in signal processing are known a-priori and well-
behaved. Due to strict real time requirements found in certain
applications, the issue of QOS is now being revisited.

V. EPIPHANY CHIP IMPLEMENTATION
 The Epiphany architecture has been implanted in four

separate chips, culminating in the latest 4th generation 28 nm
Epiphany-IV 64-core design. The Epiphany-IV contains 64
identical floating point eCores, each one with 32 KB of local
memory.

 The Epiphany-IV was implemented in a 28 nm LP
CMOS process with 9 layers of copper metal for routing and
contains over 160 million transistors in an area of 10 mm2. The
chip was implemented in hierarchical tiled layout
methodology, wherein a basic processor tile was implemented
as a complete hard macro with all pins and clocks completely
exposed at the four sides of the tile. The top level chip layout
was done completely through abutment and without any signal
routing. Any signal that needed to be communicated across the
chip, was registered within each tile and fed through to its
neighbors. The Epiphany-IV was implemented in less than 12
weeks by 2 engineers, translating to an efficiency of 1 M
transistors per engineer per day.

 The energy efficiency of the Epiphany chips are mostly a
byproduct of architectural design decisions rather than circuit
level optimization. No custom logic was used in
implementation and off the shelf 9-track standard cell libraries
were used to implement the design. Leakage power was

minimized by not using LVT threshold transistors while
dynamic idle power was minimized through extensive use of
clock gating and power saving idle modes.

The Epiphany-IV has been operated up to 800 MHz in the
lab, offering a peak theoretical performance of 102 GFLOPS
(while drawing 1.74 W). It theoretically has 102 GB/s of
bisection bandwidth, 1.6 TB/s of on-chip local memory band-
width, and 7.2 GB/s of aggregate off-chip bandwidth. The peak
energy efficiency of of 70 GFLOPS/W is achieved at 0.9 V and
a frequency of 500 MHz.

VI. THE PARALLELLA BOARD
The most prominent usage of the third generation Epiphany

silicon E16G301 is the Parallella board [9]. The development
of this board was financed in 2012 as a Kickstarter project.

The Parallella board, shown in in Fig. 5, is a fully open-
source credit-card sized computer containing a 16-core
Epiphany E16G301, a Xilinx Zynq 7010/7020, and 1 GiB of
RAM. The Xilinx Zynq is a System-on-Chip (SoC) with two
ARM Cortex-A9 processor cores and some reconfigurable
FPGA logic and is fully supported by Linux. The board also
contains GBit-Ethernet, USB and HDMI interfaces, can boot
from a MicroSD card, and is able to run the Epiphany SDK.

Fig. 5. The Parallella board.

Adapteva’s e-Link interface is implemented inside the
FPGA logic and is used to exchange data between the ARM
cores and the Epiphany. By default, a 32 MiB block of
memory is shared between both systems and starts at address
0x8e000000, which translates to mesh coordinates between
(35,32) and (36,0). The 4x4 grid of processor nodes uses the
coordinates between (32,8) and (35,11) inclusive.

To allow for daughter boards, four expansion connectors
are provided, allowing access to the power supplies, general
I2C, UART, GPIO and JTAG interfaces as well as the northern
and southern eLink interfaces to the Epiphany chip.

VII. PROGRAM DEVELOPMENT
For the Epiphany architecture Adapteva has released a fully

open source software development kit (SDK) [10]. It provides
a standard C programming environment based on the GNU
toolchain (gcc, binutils, gdb) and the newlib [11] and allows

the execution of regular ANSI-C programs on the Epiphany
cores. Each core in the architecture runs a separate program,
which is built independently and then loaded onto the chip by a
host processor using a common loader. An Eclipse-based
integrated design environment manages the details of
configuring and building the project for the manycore architec-
ture.

Architecture specific features like DMAs and the interrupt
controller can be programmed through he Epiphany Utility
Library (eLib) API. The eLib library also contains support for
parallel computing synchronization operations like mutexes
and barrier functions.

For the host processor an Epiphany Host Library (eHAL)
provides direct access to the eCores, for loading programs,
starting, resetting, and message passing. It furthermore
provides read and write access to both the cores and the shared
DRAM.

On the host, all normal Linux operating system functions
are available, and any programming language able to interface
to the available C libraries may be used to control the
Epiphany. The eCores themselves don’t run any operating
system, but provide a "bare metal" standard C environment for
programming.

Thanks to the recent Parallella project, the Epiphany
architecture can now be programmed with a number of
different APIs and frameworks. Brown Deer Technology has
extended its open source GPL licensed COPRTHR library to
add Epiphany support for OpenCL, STandarD Compute Layer
(STDCL), and bare metal coprocessor threads. The COPRTHR
SDK targets heterogeneous platforms such as CPUs, GPUs,
and Parallella [12]. The support for Erlang functional
programming language is provided by developing an
application framework that allows executing OpenCL kernels
within nodes and binding it with Erlang network interface
modules [13]. The Array manipulation language (APL) is
compiled by the APL to C compiler [14] being developed at
Lab-Tools Ltd. We have implemented a backend code
generator in our in-house CAL tool-chain for CAL dataflow
language compilation targeting the Epiphany architecture [15].
Additional open source efforts are currently underway to create
OpenMP and MPI programming frameworks for the Parallella.

VIII. EXAMPLE APPLICATIONS
We have evaluated the 16-core Epiphany processor by

implementing two significant case studies, namely; an
autofocus criterion calculation and the fast factorized back-
projection algorithm, both key components in modern synthetic
aperture radar systems [16]. One of the Epiphany
implementations demonstrates the usefulness of the architect-
ture for the streaming based algorithm (the autofocus criterion
calculation) by achieving a speedup of 8.9x over a sequential
implementation on a state-of-the-art general-purpose processor
of a later silicon technology generation and operating at a 2.7x
higher clock speed.

We have also evaluated our approach of compiling CAL to
parallel C code with support for message passing being
implemented as a stand-alone library by using 1D-DCT
algorithm [17]. Our preliminary results reveal that the hand-

written implementation has only 1.3x better throughput
performance with respect to the auto-generated implementa-
tion, which is quite competitive. Also, the CAL high-level
language approach leads to reduced development effort.

Another significant study done on the Epiphany
architecture is the implementation of the bcrypt cryptography
algorithm [18]. The bcrypt implementation for Epiphany is
optimized in assembly and executes two bcrypt instances per
core. The 64-core Epiphany implementation achieves 2400
cycles per second per Watt (c/s/W) compared to 79 c/s/W for
the Intel i7-4770K CPU and 46 c/s/W for the AMD HD7970
GPU. These energy efficiency results (measured as cycles per
second per watt) reveal that Epiphany outperforms the Intel
CPU and AMD GPU by a factor of 30x and 52x respectively.

A five-point star-shaped stencil-based application kernel
was implemented using C and assembly on a 64-core 600 MHz
Epiphany-IV development platform, reaching a sustained
performance of 65 GFLOPS (85% of peak) [19]. The
implementation was able to achieve on-chip DMA bandwidth
of 2 GB/s, off-chip memory access bandwidth of 150 MB/s,
and a normalized power efficiency of 32 GFLOPS/W.

IX. FUTURE EPIPHANY WORK
The Epiphany architecture was designed for embedded real
time signal processing applications, but due to its impressive
energy efficiency and scalability, the Epiphany has also
generated significant interest within the field of High
Performance Computing (HPC). To address the HPC market,
future Epiphany products will need HPC-centric extensions for
64-bit floating-point operations, 64-bit addressing, memory
fault tolerance (ECC), and 128 KiB of memory.

To reduce I/O bottlenecks, the existing 1 Gbps/lane source
synchronous LVDS eLink interfaces will be replaced with
multiple high speed serial 10 Gbps/lane interfaces.

X. CONCLUSIONS
To summarize, we have introduced Epiphany, a processor

suitable for high-performance embedded systems. General
purpose programmability and the outstanding energy efficiency
(50 GFLOPS/W) makes this architecture a strong candidate for
all applications that do significant signal processing in
embedded and mobile environments. We have exemplified the
use of Epiphany in two such applications, radar and video
processing. We have furthermore looked at various high-level
languages based development approaches including OpenCL,
Erlang, APL, and CAL. Finally, we look beyond the current
generation of Epiphany and discuss what additional
architectural features can be expected in future generations of
Epiphany.

ACKNOWLEDGMENT
A big thank you goes to the 4,965 Kickstarter backers who

enabled the creation of the Parallella computer.

This work was supported in part by the ESCHER Project
funded by the Swedish Knowledge Foundation, the HiPEC
project funded by the Swedish Foundation for Strategic
Research, and the ELLIIT Strategic Research Initiative funded
by the Swedish Government.

The Epiphany™, eCore™, eNode™, eMesh™, eLink™,
eHost™, and eLib™ are trademarks of Adapteva Inc.

REFERENCES

[1] A. Duller, D. Towner, G. Panersar, A. Gray, and W. Robbins,
“picoArray technology: the tools story”, in Proceedings of Design,
Automation and Test in Europe, pp.106-111 Vol. 3, 7-11 March 2005.
doi: 10.1109/DATE.2005.239

[2] A. M. Jones, M. Butts, “Tera OPS hardware: A new massively-parallel
MIMD computing fabric IC”, in Proceedings of IEEE Hot Chips
Symposium, August 2006.

[3] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J.
MacKay, M. Reif, L. Bao, J. Brown et al., “Tile64-processor: A 64-core
SOC with mesh interconnect,” in Proceedings of the International Solid-
State Circuits Conference (ISSCC), pp. 88–598, 2008.

[4] Y. Adelman, et al., “600MHz DSP with 24Mb Embedded DRAM with
an Enhanced Instruction Set for Wireless Communication”, in
Proceedings of the International Solid-State Circuits Conference
(ISSCC), pp. 418-419, 2004.

[5] A. Olofsson, Panel Session: “Survivor: Computer Architecture”, High
Performance Embedded Computing (HPEC), Sep. 22-23, 2009.

[6] A. Olofsson, “A Lean Fabless Semiconductor Business Model”,
Adapteva White Paper, February 1, 2012. Available:
http://www.adapteva.com/white-papers/a-lean-fabless-semiconductor-
startup-model/ [Oct. 28, 2014]

[7] Adapteva, “Epiphany Architecture Reference”, Rev 14.03.11, 2014.
Available: http://adapteva.com/docs/epiphany_arch_ref.pdf [Nov. 25,
2014]

[8] Adapteva, “Epiphany E16G3 Datasheet”, Rev 14.03.11, 2014.
Available: http://adapteva.com/docs/e16g301_datasheet.pdf [Nov. 25,
2014]

[9] Adapteva, “Parallella – Supercomputing for Everyone”, 2014.
Available: http://www.parallella.org [Nov. 25, 2014]

[10] Adapteva, “Epiphany SDK Reference”, Rev. 5.13.09.10, 2014.
http://adapteva.com/docs/epiphany_sdk_ref.pdf [Nov. 25, 2014]

[11] RedHat, “Newlib a C library intended for use on embedded systems”
Available: http://sourceware.org/newlib/ [Nov. 25, 2014]

[12] Brown Deer Technology LLC, “Programming Parallella using STDCL”,
Application Note, 2014. Available:
http://www.browndeertechnology.com/docs/app_note_programming_pa
rallella_using_stdcl.pdf [Oct. 28, 2014]

[13] O. Kilic, “Cloud, Distributed, Embedded: Erlang in Heterogeneous
Computing World”, Erlang Solutions. 28th October 2014. Available:
http://www.erlang-
factory.com/conference/ErlangUserConference2013/speakers/OmerKilic
[Oct. 28, 2014]

[14] S. Sirlin, APL to C Compiler, 28th October 2014. Available:
http://home.earthlink.net/~swsirlin/aplcc.html [Oct. 28, 2014]

[15] E. Gebrewahid, M. Yang, G. Cedersjö, Z. Ul-Abdin, V. Gaspes, J. W.
Janneck, B. Svensson, “Realizing Efficient Execution of Dataflow
Actors on Manycores”, in Proceedings of the 12th International
Conference on Embedded and Ubiquitous Computing (EUC 2014),
Milan, Italy, Aug. 26-28, 2014.

[16] Z. Ul-Abdin, A. Ahlander, B. Svensson, “Energy-Efficient Synthetic-
Aperture Radar Processing on a Manycore Architecture”, in
Proceedings of the 42nd Annual International Conference on Parallel
Processing (ICPP-2013), pp. 330-338, Lyon, France, Oct. 1-4, 2013.

[17] S. Savas , E. Gebrewahid, Z. Ul-Abdin, T. Nordström, M. Yang, “An
Evaluation of Code Generation of Dataflow Languages on Manycore
Architectures”, in Proceedings of the 20th IEEE International
Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA 2014), Chongqing, China, Aug. 20-22, 2014.

[18] K. Malvoni and S. Designer, “Energy-Efficient bcrypt Cracking”,
presented at 6th International Conference on Passwords
(PasswordsCon), Bergen, Norway, December 2-3, 2013.

[19] A. Varghese, B. Edwards, G. Mitra, A. P. Rendell, “Programming the
Adapteva Epiphany 64-core Network-on-chip Coprocessor”, in
Proceedings of the 28th International Parallel & Distributed Processing
Symposium Workshops, pp.984-992, Phoenix, USA, May 19-23, 2014.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

